Research SA https://usth.edu.vn/en/academic-departments-and-centers/department-of-space-and-applications-sa/research-sa/ Wed, 24 Apr 2024 09:13:08 +0000 en-US hourly 1 Introduction https://usth.edu.vn/en/introduction-sa-2-4999/ https://usth.edu.vn/en/introduction-sa-2-4999/#respond Thu, 04 Aug 2022 09:38:22 +0000 http://usth.caia.vn/en/?p=4999 One of the strengths of the Department of Space and Applications is the ability to conduct scientific research which has been reflected in the growth in the number and quality of publications year by year. 1. Outstanding numbers Since its establishment in 2012, the Department of Space and Applications has focused and continuously promoted scientific […]

The post Introduction appeared first on University of Science and Technology of Hanoi.

]]>
One of the strengths of the Department of Space and Applications is the ability to conduct scientific research which has been reflected in the growth in the number and quality of publications year by year.

1. Outstanding numbers

Since its establishment in 2012, the Department of Space and Applications has focused and continuously promoted scientific research activities. It has been proved by the average annual ratio of publications to the number of permanent lecturers holding the leading position at USTH. In addition, the ratio of publications of the Department to the total publications of USTH has always remained at a very high level, averaging 25.5%, especially reaching 39% in some years. Permanent lecturers of the Department often give scientific presentations (keynote and invited talks) at national and international conferences, or participate in scientific committees of international conferences. Among them, a scientific report entitled “Regional Climate Change Assessment Model in Southeast Asia” by the Co-director of the Department –  Assoc. Ngo Duc Thanh et al ., (2022) has been included in the Intergovernmental Reports on Climate Change (IPCC No 6). 

2. Research directions

The Department has a wide research direction, going from fundamental to applied research. The main research directions include: satellite system design, astrophysics and cosmology, regional and global climate modeling, earth surface monitoring using satellite remote sensing, vegetation health monitoring using UAV. 

3. Partners

Promoting cooperation with national and international partners is one of the main priority goals of the Department. Therefore, the Department has close connections with many prestigious universities and research institutes in Vietnam, as well as in other countries such as France, South Korea, Thailand, Taiwan, ect. These connections greatly contribute to creating an extensive research network for the Department in particular, and for USTH in general.

The post Introduction appeared first on University of Science and Technology of Hanoi.

]]>
https://usth.edu.vn/en/introduction-sa-2-4999/feed/ 0
Research projects https://usth.edu.vn/en/research-projects-4996/ https://usth.edu.vn/en/research-projects-4996/#respond Thu, 04 Aug 2022 09:36:04 +0000 http://usth.caia.vn/en/?p=4996 Scientific research projects of the Department of Space and Applications during the period of 2016-2021 No. Period Research projects PI Budget Funding sources 1 2021 Development of posture control model for CUBESAT nanosatellite: Experiment and integration Dr. Phan Thanh Hiền 50.000.000₫ USTH 2 2021 Research on the surface water fluctuations in tropical monsoon regions using […]

The post Research projects appeared first on University of Science and Technology of Hanoi.

]]>
Scientific research projects of the Department of Space and Applications during the period of 2016-2021

No.

Period

Research projects

PI

Budget

Funding sources

1

2021

Development of posture control model for CUBESAT nanosatellite: Experiment and integration Dr. Phan Thanh Hiền

50.000.000

USTH

2

2021

Research on the surface water fluctuations in tropical monsoon regions using SAR Sentinel-1 images  Dr. Phạm Đức Bình

50.000.000

USTH

3

2020- 2022

To combine radar and UAV images for monitoring of mangroves changes  Dr. Tống Sĩ Sơn

300.000.000

USTH

4

2020

To build a model of VNMicrosat satellite system for student practice in the Faculty of Space and Applications Dr. Tống Sĩ Sơn

270.000.000

USTH

5

2016-2019

Historical simulation and future projection of Southeast Asia climate using regional climate models Assoc. Prof. Ngô Đức Thành

911.000.000

NAFOSTED

6

2018-2023

The Land – Ocean – aTmosphere regional coUpled System  (LOTUS) joint laboratory Assoc. Prof. Ngô Đức Thành (co-PI)

50.000 €/year 

IRD

7

2016-2018

Laboratory of Remote sEnsing and Modelling Of Surface and Atmosphere (REMOSAT) Assoc. Prof. Ngô Đức Thành 

50.000

USTH Consortium

The post Research projects appeared first on University of Science and Technology of Hanoi.

]]>
https://usth.edu.vn/en/research-projects-4996/feed/ 0
Facilities https://usth.edu.vn/en/facilities-sa-4988/ https://usth.edu.vn/en/facilities-sa-4988/#respond Thu, 04 Aug 2022 09:24:08 +0000 http://usth.caia.vn/en/?p=4988 1. Electronic and signal analyzer Oscilloscope Signal generator Programmable power supply Multimeter Linear Power Supply Synthetic frequency generator Spectrum Analyzers Axitext ROHDE & SCHWARZ FSP 1.1. Electronic Test Equipment Set Electronic test equipment is used to generate signals and obtain responses from the electronics under test. In this way, proper operation of the device can […]

The post Facilities appeared first on University of Science and Technology of Hanoi.

]]>
1. Electronic and signal analyzer
  • Oscilloscope
  • Signal generator
  • Programmable power supply
  • Multimeter
  • Linear Power Supply
  • Synthetic frequency generator
  • Spectrum Analyzers Axitext ROHDE & SCHWARZ FSP

1.1. Electronic Test Equipment Set

Electronic test equipment is used to generate signals and obtain responses from the electronics under test. In this way, proper operation of the device can be demonstrated or faults in the equipment can be traced. Using electronic test equipment is essential to any serious work on electronic systems.

Oscilloscope

An oscilloscope is a type of electronic test instrument that graphically displays various signal voltages, usually as a corrected two-dimensional plot of one or more signals as a function of time. The displayed waveform can then be analyzed for properties such as amplitude, frequency, rise time, duration, distortion, and others.

The oscilloscope can be adjusted to observe the repeated signals as a continuous wave on the display. Storage oscilloscopes can record a single event and display it continuously, so users can observe events that would otherwise appear too short to be seen directly.

Oscilloscopes are used in science, medicine, engineering, automotive and telecommunications industries. Multi-purpose tool used for electronic equipment maintenance and laboratory work. Specialized oscilloscopes can be used to analyze car ignition systems or to display heart rate waveforms in the form of an electrocardiogram.

Function generator

A function generator is usually a piece of electronic or software test equipment used to generate different electrical waveforms over a wide frequency range. Some of the most common waveforms generated by the function generator are sine wave, square wave, triangle wave, and sawtooth wave. These waveforms can be repeatable or one-time (requires internal or external trigger source). The integrated circuits used to generate waveforms can also be described as function generating ICs.

In addition to generating sine waves, function generators can often generate other repeating waveforms including sawtooth and triangular waveforms, square waves, and pulses. Another feature included on many function generators is the ability to add a DC offset.

Function generators are used in the development, testing, and repair of electronic equipment. For example, they can be used as a signal source to test an amplifier or to feed an error signal into a control loop. Function generators are mainly used to work with analog circuits, related pulse generators are mainly used to work with digital circuits.

Programmable DC power supply

A programmable power supply is a power supply that provides remote control of the output voltage(s) via an analog control signal that can be adjusted using a keypad or rotary switch commonly found on the front panel. before. RS232, GPIB, USB or other computer interfaces can also be used. Common programming functions for power supplies include voltage and current output.

Digital multimeter

A digital potentiometer is a test tool used to measure two or more electrical values—primarily voltage (volts), current (amps), and resistance (ohms). It is a standard diagnostic tool for technicians in the electrical/electronic industries.

Digital multimeters have long replaced analog analog meters due to their ability to measure with greater accuracy, reliability, and increased impedance.

Linear Power Supply

A linear power supply is a power supply unit (PSU) that does not contain any switching or digital components. It has some outstanding features compared to switching PSU such as very low noise and ripple, immunity to mains noise, simple, powerful. They can also produce very high voltages (thousands of volts) and very low voltages (less than 1V). They can easily produce multiple output voltages.

1.2. Spectrum Analyzers Axitext ROHDE & SCHWARZ FSP

The spectrum analyzer measures the magnitude of the input signal relative to the frequency throughout the instrument’s frequency range. The main use is to measure the power of the spectrum of known and unknown signals. The input signal that most popular spectrum analyzers measure is electrical; however, the spectral components of other signals, such as sound pressure waves and optical light waves, can be examined through the use of an appropriate probe.

By analyzing the spectrum of an electrical signal, students and instructors can observe the dominant frequency, power, distortion, harmonics, bandwidth, and other spectral components of the signal that are not easily detected. present in the time domain waveform. These parameters are useful in characterizing electronic devices, such as wireless transmitters.

The spectrum analyzer display has frequency on the horizontal axis and amplitude displayed on the vertical axis. To the casual observer, a spectrum analyzer looks like an oscilloscope, and in fact, laboratory equipment can act as an oscilloscope or a spectrum analyzer.

The FSP spectrum analyzer stands out for its innovative measurements and a wide range of standard functions. Designed by the RF experts at Rohde & Schwarz, all spectrum analyzers feature exceptional signal integrity, high value and excellent reliability.

Spectrum analyzers are used for many measurements including:

  • Frequency response, noise and distortion characteristics of all types of radio frequency circuits
  • Sources of interference and occupied bandwidth in telecommunications
  • Basic pre-compliance check for EMC test

Other measurement techniques involve setting up a spectrum analyzer to examine the harmonics of an audio signal, using reflection or refraction techniques to separate the wavelengths of light with a spectrum and boundary analyzer. oscillations at different component frequencies among many other techniques. The measurement techniques used will depend on the specific application.

2. Unmanned Aerial Vehicle (UAV) integrated multispectral and hyperspectral cameras

  • UAV integrated RGB camera and RTK modules Phantom 4 RTK
  • UAV integrated multispectral camera and RTK modules Phantom P4 multispectral
  • UAV Matrice 600 Pro  integrated hyperspectral camera OCI-F

2.1. UAV Phantom 4 RTK 

The Phantom 4 RTK Quadcopter from DJI is designed to deliver centimeter-level accurate mapping that can be extremely useful for surveying, construction sites, and inspections. Utilizing an RTK receiver on the top of Phantom 4, the Phantom 4 RTK can achieve 1cm+1ppm RTK horizontal and 1.5cm+1ppm RTK vertical positioning accuracy. In addition to the RTK receiver, the Phantom 4 RTK can achieve such accuracy by DJI’s TimeSync system and the gimbal camera’s calibration process. The camera is equipped with a 1″ 20MP CMOS sensor using larger pixels and has a maximum ISO of up to 12,800 as well as increased contrast. The camera has its radial and tangential lens distortions measured. They are added to the metadata of all captured images, allowing for accurate post-processing that accounts for the distortions.

The Phantom 4 RTK can perform mapping duties in real-time and When mapping, pilots can utilize the Photogrammetry and Waypoint Flight modes in the GS RTK app. This gives mapping-specific functionality, such as selecting flight paths and directly loading KML area files. Combine it all and you have an enterprise-level mapping solution that can be used right out of the box.

2.2. UAV Phantom P4 Multispectral 

DJI Phantom 4 Multispectral is DJI’s enterprise drone with precise data on the state of high precision vegetation created for agriculture. It is equipped with an integrated spectral sunlight sensor for the acquisition of extremely accurate and precise multispectral images. Data collection is a built-in stabilized imaging system and a set of 5 2MP multispectral cameras with global shutter (Blue, Green, Red, Red Edge and Near Infrared) and an RGB camera (visible spectrum), all mounted on a 3-axis stabilized gimbal.

UAV multispectral imagery can be helpful to agriculture professionals by providing information invisible to the human eye across the electromagnetic spectrum. Having access to this data and the subsequently obtained Vegetation Index data such as NDRE and NDVI, farmers can make timely, informed decisions on crop treatment, lowering costs, saving resources, and maximizing yields. Additionally, routine inspections and maintenance involving plants can be made smarter and more efficient when using the P4 Multispectral – leverage its actionable multispectral insights to monitor forest health, measure biomass, map shorelines, or manage riparian vegetation while protecting habitats or ecosystems, and much more. 

2.3. UAV integrated Hyperspectral imager

The OCI™­‐F  camera is a miniaturized push-broom hyperspectral camera covering the full VIS-­‐NIR (400-­‐1000 nm) wavelength range, with a SuperSpeed USB 3.0 interface. It features ultra-­‐compactness (14 cm x 7 cm x 7 cm) and light weight (~ 570 g) with fast data transfer rates (up to 60 fps). As an innovative “true push-­‐broom” imager: one can simply move the imager by hand or move the sample to finish the scan. Not dependent on a constant scanning speed, the OCI-­‐F Series offers versatility on various platforms such as UAVs with perfect hyperspectral image stitching. Compactness, fast imaging, simple operation, and intuitive software make the OCI-­‐F’s THE choice for first-­‐time practitioners and old-­‐pros alike.  They’re Ideal for   applications   such   as   precision   agriculture, remote sensing, conveyor sorting, forensics and all airborne applications.

The OCI-F camera is mounted on a Matrice 600 Pro, a hexacopter from DJI designed for professional video and industrial imaging applications. It is centered around DJI’s advanced A3 flight control system and incorporates the Lightbridge 2 system for HD resolution, low-latency monitoring via SDI, HDMI, and USB outputs on the controller. For camera support, the M600 works with Zenmuse Z15 series gimbals, the Ronin-MX gimbal, and Zenmuse X Series gimbal/camera hybrids. The M600 comes almost-ready-to-fly (ATF), including controller (transmitter), flight batteries, charger, flight controller, and sundries. Additional hardware needed may include a gimbal, camera, as well as any flight controller add-ons. Some assembly is required.

3. High Performance Computer system

LOTUS-REMOSAT clusters

  • 4 storage nodes (1 as headnode), 1 login node & 21 compute nodes
  • Total number of computing cores: 872
  • Peak performance: 57 Tflops
  • Total storage size: ~ 320TB 
  • Total memory size: ~ 4TB
  • Interconnect network: Mixed Infiniband 56Gbps and 100Gbps

The system is used for the simulation of global, regional phenomena such as sea surface temperature, ocean flows, precipitation, tropical storms, climate change etc. 

4. Spectrometer

USB2000+ spectrometer with Enhanced Sensitivity, Preconfigured 350-1000nm, A miniature spectrometer pre-configured for general UV-VIS measurements. The USB2000+ is a versatile, general-purpose UV-Vis spectrometer for absorption, transmission, reflectance, emission, color and other applications. Covering a wide wavelength range, from 350 to 1000 nm, this high-performance spectrometer fits into the palm of your hand giving your measurements new flexibility. Using the modular approach, we can customize measurement with a wide array of sampling accessories and light sources.

  • Modular – covers the 350-1000 nm range and connects to light sources, cuvettes and other accessories
  • Fast – integration time is 1 ms – 65 seconds
  • Portable – fiber optics based spectrometer you can bring to the sample
  • Compatible – triggering functions synchronize the spectrometer to other devices

5. Satellite model VNMicrosat

It is a satellite system model invested, researched and manufactured by the cooperation between the Department of Space and Applications and the Vietnam National Space Center (VNSC). The model includes subsystems such as: Satellite attitude stabilization system, Solar panel system, Photographic system, Wireless communication system, Ground control station.

The model is used for practice purposes by students and students of SA faculty

The post Facilities appeared first on University of Science and Technology of Hanoi.

]]>
https://usth.edu.vn/en/facilities-sa-4988/feed/ 0
Publications https://usth.edu.vn/en/publications-sa-4661/ https://usth.edu.vn/en/publications-sa-4661/#respond Tue, 02 Aug 2022 07:35:58 +0000 http://usth.caia.vn/en/?p=4661 2024 Nguyen-Le, D., T. Ngo-Duc, J. Matsumoto, 2024: The teleconnection of the two types of ENSO and Indian Ocean Dipole on Southeast Asian autumn rainfall anomalies. Climate Dynamics, 1-23. D. Nguyen-Le, 2024: Projected ENSO teleconnection on the Southeast Asian climate under global warming. Environmental Research Letter, 19, 014001, https://doi.org/10.1088/1748-9326/ad0d3e Kusaka, H., Y. Imai, H. Kobayashi, Q.-V. Doan, T. Ngo-Duc, 2024: […]

The post Publications appeared first on University of Science and Technology of Hanoi.

]]>
2024
  1. Nguyen-Le, D., T. Ngo-Duc, J. Matsumoto, 2024: The teleconnection of the two types of ENSO and Indian Ocean Dipole on Southeast Asian autumn rainfall anomalies. Climate Dynamics, 1-23.
  2. D. Nguyen-Le, 2024: Projected ENSO teleconnection on the Southeast Asian climate under global warming. Environmental Research Letter, 19, 014001, https://doi.org/10.1088/1748-9326/ad0d3e
  3. Kusaka, H., Y. Imai, H. Kobayashi, Q.-V. Doan, T. Ngo-Duc, 2024: Influence of foehn winds of Truong Son Mountains on the high temperatures observed in North-Central Vietnam during May 31-June 5, 2017. Journal of Applied Meteorology and Climatologyhttps://doi.org/10.1175/JAMC-D-23-0010.1.
  4. Nguyen-Duy, T., T. Ngo-Duc*, D. Nguyen-Le, T. Nguyen-Xuan, T. Phan-Van, 2024: Identification and Trend Analysis of Compound Meteorological Hazards along Vietnam’s Coastline. Natural Hazardshttps://doi.org/10.1007/s11069-024-06486-4
  5. Le, H.H., N. Hall, T. Ngo-Duc, 2024: Remote influence on regional scale intraseasonal rainfall variability over Vietnam. International Journal of Climatology, 44, 1171–1189, https://doi.org/10.1002/joc.8377.
  6. Vu, N., T. Ngo-Duc*, 2024: Spatial Distribution and Trends of Heat Stress in Vietnam. Environment and Natural Resources Journal, 22(2), 93–104, doi: 10.32526/ennrj/22/20230227.
  7. Pham, M.K., P. L. Nguyen, V.H. Vu, T. N. Truong, H. Vo-Van, T. Ngo-Duc, 2024: A Data-driven Approach for High Accurate Spatiotemporal Precipitation Estimation. Neural Computing and Applicationshttps://doi.org/10.1007/s00521-023-09397-w
  8. Nguyen, Q. S, C.L. Nguyen, T. Ngo-Duc, S. Ouillon, 2024: Applying a machine learning-based method for the prediction of suspended sediment concentration in the Red River basin. Modeling Earth Systems and Environmenthttps://doi.org/10.1007/s40808-023-01915-y.

2023

  1. Binh Pham-Duc, 2023: Comparison of multi-source satellite remote sensing observations for monitoring the variations of small lakes: a case study of Dai Lai Lake (Vietnam). ”Journal of Water and Climate Change”. https://doi.org/10.2166/wcc.2023.505
  2. Pham-Duc, B.Tran-Anh, Q., and Tong-Si, S., 2023: Monitoring monthly variation of Tonle Sap Lake water volume using Sentinel-1 imagery and satellite altimetry data. Vietnam Journal of Earth Scienceshttps://doi.org/10.15625/2615-9783/18897
  3. Pham-Duc, B., Nguyen, H., Phan, H., and Tran-Anh, Q., 2023: Trends and applications of google earth engine in remote sensing and earth science research: a bibliometric analysis using scopus database. Earth Sci Informhttps://doi.org/10.1007/s12145-023-01035-2
  4. Binh Pham-Duc, 2023: Mapping small burned areas using high spatial resolution planetscope imagery: a case study of the wildfire in Da Lat city. ”Journal of Forestry Science and Technology”. https://doi.org/10.55250/jo.vnuf.8.2.2023.097-106
  5. Nguyen, P. L, M.K. Pham, V.H. Vu, T. N. Truong, H. Vo-Van, T. Ngo-Duc, 2023: A Data-driven Approach for High Accurate Spatiotemporal Precipitation Estimation. Neural Computing and Applications, accepted.
  6. Nguyen, Q. S, C.L. Nguyen, T. Ngo-Duc, S. Ouillon, 2023: Applying a machine learning-based method for the prediction of suspended sediment concentration in the Red River basin. Modeling Earth Systems and Environment, accepted.
  7. T. Trinh, N. Do, L. Trinh-Tuan, K. Carr, 2023: Flood forecasting by means of dynamical downscaling of global NWPs coupling with a hydrologic model at Nong Son-Thanh My River basins. Journal of Water and Climate Change 14 (9), 3257-3279. doi: 10.2166/wcc.2023.262
  8. [in Vietnamese] Ngo-Duc, T.L. Trinh-Tuan, 2023: Future Rainfall Projections in Vietnam based on a CMIP6 Dynamical Downscaling Experiment. VNU Journal of Science: Earth and Environmental Sciences. doi: 10.25073/2588-1094/vnuees.4933
  9. Chung, J.X, L. Juneng, J. Santisirisomboon, T. Ngo-Duc, T. Phan-Van, L. Trinh-Tuan, F. Cruz, J. Dado, R. Srisawadwong, D. Gunawan, J.L. McGregor, H. Sasaki, A. Marata, S.T. Ngai, P. Singhruck, M.S.F. Mohd, E. Aldrian, E. Salimun, F. Tangang, 2023: Future changes in mean and extreme precipitation over Peninsular Malaysia using CORRDEX-SEA 5km simulations. APN Science Bulletin, 13(1), 263–276. doi:10.30852/sb.2023.2348.
  10. Nguyen-Duy, T., N. Ayoub, P. De Mey-Frémaux, T. Ngo-Duc, 2023: How sensitive is a simulated river plume to uncertainties in wind forcing? A case study for the Red River plume (Vietnam). Ocean Modelling, 186, 102256. https://doi.org/10.1016/j.ocemod.2023.102256.
  11. D. Nguyen-Le, 2023: Climatology of the global summer monsoon rainy seasons: Revisited from a high-resolution satellite climate data record. Atmospheric Research, 289, 106749, https://doi.org/10.1016/j.atmosres.2023.106749
  12. Magnaye, A.M.T., L.G.B Aragon, J.M.B. Dado, F.T. Cruz, G.T. Narisma, L.M.P. Olaguera, F. Tangang, L. Juneng, T. Ngo-Duc, T. Phan-Van, J. Santisirisomboon, P. Singhruck, D. Gunawan, D., & E. Aldrian, 2023: Process-based analysis of sea surface temperature on climate in CORDEX-SEA simulations. Climate Dynamicshttps://doi.org/10.1007/s00382-023-06826-3.
  13. Nguyen-Duy, T. T. Ngo-Duc*, Q. Desmet, 2023: Performance evaluation and ranking of CMIP6 global climate models over Vietnam. Journal of Water and Climate Change, 14(6), 1831, https://doi.org/10.2166/wcc.2023.454
  14. Tran-Anh, Q. T. Ngo-Duc*, E. Espagne, L. Trinh-Tuan , 2023: A 10-km CMIP6 downscaled dataset of temperature and precipitation for historical and future Vietnam climate. Scientific Data, 10:257, https://doi.org/10.1038/s41597-023-02159-2
  15. [in Vietnamese] Ngo-Duc, T., B.T.K. Hoa, 2023: Trend and return frequency of hot and cold extreme events in Northern Vietnam during the period 1961–2018. VNU Journal of Science: Earth and Environmental Sciences. doi: 10.25073/2588-1094/vnuees.4934
  16. Kreibich H., Van Loon, A.F., Schröter, K., …., T. Ngo-Duc, et al., 2023: Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts. Earth System Science Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023.
  17. Ngo-Duc, T., 2023: Rainfall extremes in Northern Vietnam: a comprehensive analysis of patterns and trends. Vietnam Journal of Earth Sciences, 45(2),183–198, doi: 10.15625/2615-9783/18284
  18. [in Vietnamese] Ngô Đức Thành, 2023: Kịch bản Biến đổi khí hậu cho khu vực Đông Nam Á và Việt Nam: hiện trạng và đề xuất hướng nghiên cứu tiếp theo (Climate change scenarios for Southeast Asia and Vietnam: current status and future research directions). VNU Journal of Science: Earth and Environmental Sciences, 39(1), 1–15. doi: 10.25073/2588-1094/vnuees.4932.
  19. Nguyen-Xuan, T., & Im, E.-S., 2023: Assessing the performance of the non-hydrostatic RegCM4 with the improved urban parameterization over southeastern China. Urban Climate (Vol. 49, p. 101527). Elsevier BV. https://doi.org/10.1016/j.uclim.2023.101527
  20. Espagne, E., Y. Ha Boi, K. Houngbedji, T. Ngo-Duc, 2023: Typhoons and urbanisation in Vietnam, Revue d’Economie du Développement, 31, 57-62. https://doi.org/10.3917/edd.362.0057
  21. Nguyen-Thanh, H. T. Ngo-Duc*, M. Herrmann, 2023: The distinct impacts of the two types of ENSO on rainfall variability over Southeast Asia. Climate Dynamics, https://doi.org/10.1007/s00382-023-06673-2.
  22. Le, Q. T. and S. S. Tong, (2023): Monitoring Mangrove Forest Changes in Vietnam Using Cloud-Based Geospatial Analysis and MultiTemporal Satellite Images. Environmental Science and Engineering,: 543-560. DOI: 10.1007/978-3-031-17808-5_33.
  23. Pham, T. L., S. S. Tong and V. N. Nguyen (2023): Flash Flood Hazard Mapping Based on Analytic Hierarchy Process for a Complex Terrain: A Case Study of Chu Lai Peninsula, Vietnam. Environmental Science and Engineering, DOI: 573-590. 10.1007/978-3-031-17808-5_35
  24. Tong, S. S., B. Pham-Duc, T. H. Phan, V. T. Bui, V. C. Le, T. L. Pham and T. H. A. Tong (2023). “Investigation of estuarine mangrove ecosystem changes using unmanned aerial vehicle images: Case study in Xuan Thuy National Park (Vietnam).” Regional Studies in Marine Science 62: 102910. DOI:10.1016/j.rsma.2023.102910

 

2022

  1. [Book chapter] Trung Tran, Hien Thu Thi Ta, Binh Pham-Duc. 2022. Impacts of the Fourth Industrial Revolution on Human Resource Development in Vietnam. In Book Educational Innovation in Vietnam Opportunities and Challenges of the Fourth Industrial Revolution (1st ed.). Routledge. https://doi.org/10.4324/9781003202424
  2. Pham-Duc, Binh*, Frederic Frappart, Quan Tran-Anh, Son Tong Si, Hien Phan, Son Nguyen Quoc, Anh Pham Le, and Bach Do Viet. 2022. Monitoring Lake Volume Variation from Space Using Satellite Observations—A Case Study in Thac Mo Reservoir (Vietnam). Remote Sensing 14, no. 16: 4023. https://doi.org/10.3390/rs14164023
  3. Pham-Duc, B., Tran, T., Huu Hoang, D. and Bao Do, C. (2022), Global scientific literature on human resource development: a bibliometric analysis using Scopus database, European Journal of Training and Development, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/EJTD-01-2022-0004
  4. [Book chapter] Tangang, F., J.X. Chung, F. Cruz, Supari, J. Santisirisomboon, T. Ngo-Duc, L. Juneng, E. Salimun, G. Narisma, J. Dado, T. Phan-Van, M.S.F. Mohd, P. Singhruck, J.L. McGregor, E. Aldrian, D. Gunawan, & A. Spaheluwakan (2022). CORDEX Southeast Asia: Providing Regional Climate Change Information for Enabling Adaptation. In: Unnikrishnan, A., Tangang, F., Durrheim, R.J. (eds) Extreme Natural Events. Springer, Singapore, 3–21. https://doi.org/10.1007/978-981-19-2511-5_1
  5. [Book chapter] Tran-Anh, Q., T. Ngo-Duc*, E. Espagne, 2022: Statistical downscaling and probabilistic projections for climate risk analysis in Viet Nam. In: National Climate Change Impacts and Adaptation, Final Report. Final Report GEMMES Viet Nam project [E. Espagne, G. Magacho (eds.)]. Paris. Agence Française de Développement. 70pp.
  6. Espagne, E., Y.B. Ha, K. Houngbedji, T. Ngo-Duc, 2022: Effect of typhoons on economic activities in Vietnam: Evidence using satellite imagery. AFD Research Papers (ISSN: 2492 – 2846), no 263, 13pp. https://www.afd.fr/en/ressources/effect-typhoons-economic-activities-vietnam-evidence-using-satellite-imagery
  7. Espagne, E., Y. Ha Boi, K. Houngbedji, T. Ngo-Duc, 2022: Typhoons and urbanisation in Vietnam, Revue d’Economie du Développement, accepted.
  8. Kreibich, H., Van Loon, A.F., Schröter, K., …., T. Ngo-Duc, et al., 2022: The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86. https://doi.org/10.1038/s41586-022-04917-5
  9. Tran-Anh, Q., T. Ngo-Duc*, E. Espagne, L. Trinh-Tuan, 2022: A High-Resolution Projected Climate Dataset for Vietnam: construction and preliminary application in assessing future change. Journal of Water and Climate Change, jwc2022144, https://doi.org/10.2166/wcc.2022.144.
  10. Ngai, S.T., L. Juneng, F. Tangang, J.X. Chung, Supari, E. Salimun, F. Cruz, T. Ngo-Duc, T. Phan-Van, J. Santisirisomboon, D. Gunawan, 2022: Projected Mean and Extreme Precipitation Based on Bias-Corrected Simulation Outputs of CORDEX Southeast Asia. Weather and Climate Extremes, 100484. https://doi.org/10.1016/j.wace.2022.100484
  11. Phan-Van, T., P. Nguyen-Ngoc-Bich, T. Ngo-Duc , T. Vu-Minh, P. V.V. Le, L. Trinh-Tuan, T. Nguyen-Thi, H. Pham-Thanh, D. Tran-Quang, 2022: Drought over Southeast Asia and its association with large-scale drivers. Journal of Climatehttps://doi.org/10.1175/JCLI-D-21-0770.1..
  12. Hoang-Cong, H. ., T. Ngo-Duc * , T. Nguyen-Thi, L. Trinh-Tuan, C. Jing Xiang, F. Tangang, S. Jerasorn, T. Phan-Van, 2022: A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall. Vietnam Journal of Earth Sciences https://doi.org/10.15625/2615-9783/16942
  13. Nguyen, P-L., M. Bador, L. V. Alexander, T. P. Lane, T. Ngo-Duc, 2022: More intense daily precipitation in CORDEX-SEA regional climate models than their forcing global climate models over Southeast Asia. International Journal of Climatologyhttps://doi.org/10.1002/joc.7619.
  14. Vu, D.Q., Q.V. Doan, T. Ngo-Duc , N. Dinh, D.D. Nguyen, 2022: Offshore wind resource in the context of global climate change: a case study of a tropical sea. Applied Energy, 308, 118369, https://doi.org/10.1016/j.apenergy.2021.118369.
  15. Herrmann, M., T. Nguyen-Duy, T. Ngo-Duc, F. Tangang, 2022: Climate change impact on sea surface winds in Southeast Asia. International Journal of Climatology, 42, 3571-3595. https://doi.org/10.1002/joc.7433
  16. Magnaye, A. M. T., Narisma, G. T., Cruz, F. T., Dado, J. M. B., Tangang, F., Juneng, L., Ngo-Duc, T. , Phan-Van, T., Santisirisomboon, J., Singhruck, P., Gunawan, D., & Aldrian, E., 2022: Potential influence of sea surface temperature representation in climate model simulations over CORDEX-SEA domain. International Journal of Climatology, 42, 3702–2725. https://doi.org/10.1002/joc.7440
  17. Binh Pham-Duc, Ho Nguyen, 2022: A bibliometric analysis on the visibility of the Sentinel-1 mission in the scientific literature. Arabian Journal of Geosciences, 15 (829), https://doi.org/10.1007/s12517-022-10089-3.
  18. Nguyen-Xuan T., Lam S.L., Giorgi F., Coppola E., Giuliani G., Gao X., Im E.-S. (2022) Evaluation of the performance of non-hydrostatic RegCM4 (RegCM4-NH) over Southeastern China. Climate Dynamics, 58:1419-1437. https://doi.org/10.1007/s00382-021-05969-5. ISSN: 09307575, 14320894.
  19. Hoang, T.D., Ngoc, N.B., Diep, P.N., Hoang, T., Pattle, K., Lim, W., Le, N., Nguyen, D.D., Phuong, N.T., Fuda, N., Van Bui, T., Le, G.B.T., Phan, H. and Giang, N.C., 2022. Studying magnetic fields and dust in M17 using polarized thermal dust emission observed by SOFIA/HAWC+. The Astrophysical Journal, 929(1), p.27. https://doi.org/10.3847/1538-4357/ac5abf
  20. Truong, B., Tram, L.N., Hoang, T., Chau Giang, N., Diep, P.N., Nguyen, D., Phuong, N.T., Hoang, T.D., Bich Ngoc, N., Fuda, N. and Phan, H., 2021. Modeling extinction and reddening effects by circumstellar dust in the Betelgeuse envelope in the presence of radiative torque disruption. The Astrophysical Journal, 936(2). P.101. https://doi.org/10.3847/1538-4357/ac86d9
  21. The QUBIC collaboration, M. Piat, G. Stankowiak, E.S. Battistelli, P. de Bernardis, G. D’Alessandro, M. De Petris, L. Grandsire, J.-Ch. Hamilton, T.D. Hoang, S. Marnieros, S. Masi, A. Mennella, …, JCAP(2022), 037, QUBIC IV: Performance of TES bolometers and readout electronics, (Work during PhD period), https://iopscience.iop.org/article/10.1088/1475-7516/2022/04/037

2021

  1. Magnaye, A., L. Aragon, J. Dado, F. Cruz, L. Olaguera, G. Narisma, F. Tangang, L. Juneng, T. Ngo-Duc , T. Phan-Van, J. Santisirisomboon, P. Singhruck, D. Gunawan, E. Aldrian, 2021: Potential Influence of Sea Surface Temperature Representation in Climate Model Simulations over CORDEX-SEA Domain.International Journal of Climatology, conditionally accepted.
  2. Arias, P. A., N. Bellouin, E. Coppola, …, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A. C. Ruane, L. Ruiz, J-B. Sallée, B. H. Samset, S. Sathyendranath, S. I. Seneviratne, A. A. Sörensson, S. Szopa, I. Takayabu, A-M. Treguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, K. Zickfeld, 2021, Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
  3. Gutiérrez, J. M., R. G. Jones, G. T. Narisma, L. M. Alves, M. Amjad, I. V. Gorodetskaya, M. Grose, N. A. B. Klutse, S. Krakovska, J. Li, D. Martínez-Castro, L. O. Mearns, S. H. Mernild, T. Ngo-Duc, B. van den Hurk, J-H. Yoon, 2021, Atlas. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
  4. [Book chapter] Tangang, F., J.X. Chung, F. Cruz, Supari, S.T. Ngai, E. Salimun, F. Cruz, G. Narisma, T. Ngo-Duc, J. Santisirisomboon, L.Juneng, A. Spaheluwakan, M.F. Akhir, M.S.F. Mohd, 2021: Progress in Climate Change Downscaling Simulations in Southeast Asia. Springer book chapter in “Climate Resilience and Environmental Sustainability Approaches – Global Lessons and local Challenges” (edited by A. Kaushik, C.P. Kausick, and S.D. Attri), Springer, 12–36.
  5. [Book in Vietnamese] Ngô Đức Thành, 2021: Giáo trình Đánh giá Biến đổi Khí hậu. Nhà xuất bản Đại học Quốc gia Hà Nội, 247pp.
  6. Binh Pham-Duc*Tong Si Son, 2021: Monitoring spatial-temporal dynamics of small lakes based on SAR Sentinel-1 observations: a case study over Nui Coc Lake (Vietnam). Vietnam Journal of Earth Scienceshttps://doi.org/10.15625/2615-9783/16315.
  7. Desmet, Q. and T. Ngo-Duc*, 2021: A novel method for ranking CMIP6 Global Climate Models over the Southeast Asian region. International Journal of Climatologyhttps://doi.org/10.1002/joc.7234.
  8. Xiao, H., Y. Tang, H. Li, L. Zhang, T. Ngo-Duc, D. Chen, Q. Tang, 2021: Saltwater intrusion into groundwater systems in the Mekong Delta and links to global change. Advances in Climate Change Research, 12(3), 342–352, https://doi.org/10.1016/j.accre.2021.04.005.
  9. Nguyen-Ngoc, B.P., T. Phan-Van, T. Ngo-Duc, T. Vu-Minh, L. Trinh-Tuan, F. Tangang, L. Juneng, F. Cruz, J. Santisirisomboon, G. Narisma, E. Aldrian, 2021: Projected Evolution of Drought Characteristics in Vietnam Based on CORDEX-SEA downscaled CMIP5 data. International Journal of Climatologyhttps://doi.org/10.1002/joc.7150.
  10. Binh Pham-Duc, Trung Tran, Hien-Thu-Thi Le, Nhi-Thi Nguyen, Ha-Thi Cao, Tien-Trung Nguyen, 2021: Research on Industry 4.0 and on key related technologies in Vietnam: A Bibliometric Analysis using Scopus. Learned Publisinghttps://doi.org/10.1002/leap.1381
  11. Tibay, J., G. Narisma, F. Cruz, F. Tangang, L. Juneng, T. Ngo-Duc, T. Phan-Van, J. Santisirisomboon, P. Singhruck, D. Gunawan, E. Aldrian, 2021: Detecting Tropical Cyclones in Regional Climate Model Simulations over the CORDEX-Southeast Asia Domain, International Journal of Climatology, 41: 4236– 4252. https://doi.org/10.1002/joc.7070.
  12. Nguyen-Thuy, H., T. Ngo-Duc*, L. Trinh-Tuan, F. Tangang, F. Cruz, T. Phan-Van, L. Juneng, G. Narisma, J. Santisirisomboon, 2021: Time of Emergence of Climate Signals over Vietnam detected from the CORDEX-SEA experiments. International Journal of Climatology, 41(3), 1599-1618. https://doi.org/10.1002/joc.6897.
  13. Thiem Hoang, Le Ngoc Tram, Hyeseung Lee, Pham Ngoc Diep, Nguyen Bich Ngoc, 2021: Grain alignment and disruption by radiative torques in dense molecular clouds and implication for polarization holes. ”The Astrophysical Journal, accepted”
  14. Nguyen Bich Ngoc, Pham Ngoc Diep, …, Le Ngoc Tram et al., 2021: Observations of magnetic fields surrounding LkHalpha 101 taken by the BISTRO survey with JCMT-POL-2. ”The Astrophysical Journal, accepted”
  15. D. Arzoumanian, R. Furuya, …, Le Ngoc Tram et al., 2021: Dust polarized emission observations of NGC 6334. ”Astronomy & Astrophysics, accepted”
  16. Le Ngoc Tram, Thiem Hoang, Hyeseung Lee, Fabio P. Santos, Archana Soam, Pierre Lesaffre, Antoine Gusdorf, William Reach, 2021: Understanding polarized dust emission from Rho Ophiuchi A in light of grain alignment and disruption by radiative torques. The Astrophysical Journal, Volume 906, Number 2https://iopscience.iop.org/article/10.3847/1538-4357/abc6fe
  17. Joseph M. Michail, Peter C. Ashton, …, Le Ngoc Tram et al., 2021: Far-Infrared polarization spectrum of the OMC-1 star-forming region. The Astrophysical Journal, Volume 907, Number 1https://iopscience.iop.org/article/10.3847/1538-4357/abd090
  18. P. Dell’Ova, A. Gusdorf, …, Le Ngoc Tram et al., 2020: Interstellar anatomy of the TeV gamma-ray peak in the IC443 supernova remnant. Astronomy & Astrophysics, Volume 644, Number A64https://doi.org/10.1051/0004-6361/202038339
  19. Nguyen Quoc Long, Le Thi Thu Ha, Si Son Tong, Kim Thi Thu Huong, 2020: UAV Photogrammetry-Based for Open Pit Coal Mine Large Scale Mapping, Case Studies in Cam Pha city, Vietnam. ”Sustainable Development of Mountain Territories 12(4):501-509″, https://doi.org/10.21177/1998-4502-2020-12-4-501-509
  20. M. Piat, G. Stankowiak, E.S. Battistelli, P. de Bernardis, G. D’Alessandro, M. De Petris, L. Grandsire, J.-Ch. Hamilton, T.D. Hoang, S. Marnieros, …, ey al., QUBIC IV: Performance of TES Bolometers and Readout Electronics, https://arxiv.org/abs/2101.06787
  21. Nguyen-Thi, T., T. Ngo-Duc*, F. Tangang, F. Cruz, L. Juneng, J. Santisirisomboon, E. Aldrian, T. Phan‐Van, G. Narisma., 2021: Climate analogue and future appearance of novel climate in Southeast Asia. International Journal of Climatology, 41v(Suppler. 1): E392-E409. https://doi.org/10.1002/joc.6693.

2020

  1. Pham-Duc,Binh, Nguyen,Ho, Le Minh,Cuong, Khanh,Linh Hoang,Trung,Tran: A Bibliometric and Content Analysis of Articles in Remote Sensing from Vietnam Indexed in Scopus for the 2000-2019 period. Serials Reviewhttps://www.tandfonline.com/doi/full/10.1080/00987913.2020.1854155.
  2. Binh Pham-Duc, Trung Tran, Thao-Phuong-Thi Trinh,Tien-Trung Nguyen, Ngoc-Trang Nguyen, Hien-Thu-Thi Le: A Spike in the Scientific Output on Social Sciences in Vietnam for recent three Years: Evidence from Bibliometric Analysis in Scopus database (2000-2019). ”Journal of Information Science, https://journals.sagepub.com/doi/10.1177/0165551520977447
  3. Ngo-Duy Tung and Thiem Hoang, 2020: Rotational Disruption of Dust and Ice by Radiative Torques in Protoplanetary Disks and the Implications for Observations. The Astrophysical Journal, Volume 901, Number 1https://iopscience.iop.org/article/10.3847/1538-4357/abacbf
  4. Thiem Hoang and Ngo-Duy Tung, 2020: Evolution of Dust and Water Ice in Cometary Comae by Radiative Torques. The Astrophysical Journal, Volume 901, Number 1https://iopscience.iop.org/article/10.3847/1538-4357/abafa5
  5. Pham-Thanh, H., T. Ngo-Duc*, J. Matsumoto, T. Phan-Van, H. Vo-Van, 2020: Rainfall trends in Vietnam and their association with Tropical Cyclones during 1979-2019. SOLA, 16, 166-169https://doi.org/10.2151/sola.2020-029.
  6. Tangang, F., J.X. Chung, L. Juneng, … T. Ngo-Duc et al., 2020: Projected Future Changes in Rainfall in Southeast Asia based on CORDEX–SEA multi-model simulations. Climate Dynamics, 55(5), 1247-1267https://doi.org/10.1007/s00382-020-05322-2.
  7. Trang Thu Nguyen, Trung Tran, Loc My Thi Nguyen, Thuan Van Pham, Tram Phuong Thuy Nguyen, Hieu Trung Pham, Binh Pham-Duc, 2020: Influence of ethnic culture in choosing the learning type of ethnic minorities: Evidence from Northwest of Vietnam. Cogent Social Sciences, 6,1753487https://doi.org/10.1080/23311886.2020.1753487
  8. Thiem Hoang, Nguyen Chau GiangLe Ngoc Tram, 2020: Gamma-ray Burst Afterglows: time-varying extinction, polarization, and colors due to rotational disruption of dust grains. The Astrophysical Journal, Volume 895, Number 1https://iopscience.iop.org/article/10.3847/1538-4357/ab8ae1
  9. P. Lesaffre, P. Todorov, F. Levrier, V. Valdivia, N.Dzyurkevich, B. Godard, L.N. Tram, A. Gusdorf, A. Lehmann, E. Falgarone, 2020: Molecules production and excitation by dissipation of 2D turbulence. Monthly Notices of the Royal Astronomical Society, Volume 495, Issue 1, June 2020, Pages 816–834https://doi.org/10.1093/mnras/staa849
  10. Le Ngoc Tram, Thiem Hoang, Archana Soam, Pierre Lesaffre, William Reach, 2020: Modeling rotational disruption of grains and microwave emission from spinning dust in AGB envelopes. The Astrophysical Journal, Volume 893, Number 2https://doi.org/10.3847/1538-4357/ab7b5e
  11. Binh Pham-Duc, Florence Sylvestre, Fabrice Papa, Frédéric Frappart, Camille Bouchez & Jean-Francois Crétaux, 2020: The Lake Chad hydrology under current climate change. Scientific Report,10, 5498http://doi.org/10.1038/s41598-020-62417-w
  12. Shin, S., Y. Pokhrel, D. Yamazaki, X. Huang, N. Torbick, J. Qi, S. Pattanakiat, T. Ngo-Duc , T. Nguyen, 2020: High Resolution Modeling of River-floodplain-reservoir Inundation Dynamics in the Mekong River Basin. Water Resources Researchhttps://doi.org/10.1029/2019WR026449.
  13. Supari, S., L. Juneng, F. Cruz, J.X. Chung, S.T. Ngai, E. Salimun, M.S.F. Mohd, J. Santisirisomboon, P. Singhruck, P.V. Tan, T. Ngo-Duc, G. Narisma, E. Aldrian, D. Gunawan, A. Sopaheluwakan, 2020: Multi-model Projections of Precipitation Extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Environmental Research, 184, 109350https://doi.org/10.1016/j.envres.2020.109350.
  14. Thiem Hoang, and Le Ngoc Tram, 2020: Rotational Desorption of Ice Mantles from Suprathermally Rotating Grains around Young Stellar Objects. The Astrophysical Journal, Volume 891, Number 1https://iopscience.iop.org/article/10.3847/1538-4357/ab6eff
  15. Aires, F.; Venot, J.-P.; Massuel, S.; Gratiot, N.;Binh Pham-Duc; Prigent, C. , 2020: Surface Water Evolution (2001–2017) at the Cambodia/Vietnam Border in the Upper Mekong Delta Using Satellite MODIS Observations. Remote Sensing, 12, 800https://doi.org/10.3390/rs12050800.
  16. Binh Pham-Duc, and Trung Tran, 2020: Potential of Sentinel-1 SAR observations to monitor floods in the North Vietnam. International Journal of Scientific and Technology Research, 9, 4http://www.ijstr.org/paper-references.php?ref=IJSTR-0420-34427
  17. Nguyen Chau Giang, Thiem Hoang, and Le Ngoc Tram, 2020: Time-varying Extinction, Polarization, and Colors of Type Ia Supernovae due to Rotational Disruption of Dust Grains. The Astrophysical Journal, 888, 93https://doi.org/10.3847/1538-4357/ab5d37.
  18. Herrmann, M., T. Ngo-Duc, L. Trinh-Tuan, 2020: Impact of climate change on sea surface wind in Southeast Asia, from climatological average to extreme events: results from a RegCM4 dynamical downscaling of CNRM-CM5 in the CORDEX-SEA framework. Climate Dynamicshttps://doi.org/10.1007/s00382-019-05103-6.
  19. Tong Si Son, Jean-Paul Deroin, and Pham Thi Lan, 2020: An optimal waterline approach for studying tidal flat morphological changes using remote sensing data: A case of the northern coast of Vietnam. Estuarine, Coastal and Shelf Science, 236: 5https://doi.org/10.1016/j.ecss.2020.106613
  20. Tong Si Son, Thi Lan Pham, Quoc Long Nguyen, Thi Thu Ha Le, Le Hung Trinh, Xuan Cuong Cao, Adeel Ahmad, Thi Huyen Ai Tong, 2020: The Study Of Land Cover Change Using Change Vector Approach Integrated With Unsupervised Classification Method: A Case In Duy Tien (Vietnam). Geography, Environment, Sustainability, 13: 2, 175-184https://doi.org/10.24057/2071-9388-2019-62
  21. Tong Si Son, Quang Toan LE, Phan Long VU, Thi-Lan PHAM, Le Thi Thu Ha, Thi-Huyen-Ai TONG, Vu Giang NGUYEN, 2020: Coupling Satellite Images and Unmanned Aerial Vehicle Data to Monitor the Exploitation of Open-Pit Mine. Inżynieria Mineralna-Journal of the Polish Mineral Engineering Society, 1: 2, 291–300http://www.potopk.com.pl/archiwum.html
  22. Bui Ngoc Quy, Le Dinh Hien, Nguyen Quoc Long, Tong Si Son, Duong Anh Quan, Pham Van Hiep, Phan Thanh Hai, Pham Thi Lan, 2020: Method of Defining the Parameters for UAV Point Cloud Classification Algorithm. Inżynieria Mineralna-Journal of the Polish Mineral Engineering Society, 1: 2, 49–56http://www.potopk.com.pl/archiwum.html
  23. Giang Tuan Linh, Dang Kinh Bac, Le Quang Toan, Nguyen Vu Giang, Tong Si Son, Pham Van-Manh, 2020: U-Net Convolutional Networks for Mining Land Cover Classification Based on High-Resolution UAV Imagery. IEEE Access, 8, 186257-186273https://doi.org/10.1109/ACCESS.2020.3030112
  24. H. Sugai, …, D.-T. Hoang, …, 27 January 2020: Updated Design of the CMB Polarization Experiment Satellite LiteBIRD. Journal of Low Temperature Physics, 199, pages1107–1117https://doi.org/10.1007/s10909-019-02329-w

2019

  1. Thiem Hoang, Ngo Duy Tung, 2019: Chemistry on Rotating Grain Surfaces: Ro-thermal Desorption of Molecules from Ice Mantles. The Astrophysical Journal, 885, 125, https://doi.org/10.3847/1538-4357/ab4810.
  2. Pham-Thanh, H., R. van der Linden, T. Ngo-Duc, Q. Nguyen-Dang, A. H. Fink, T. Phan-Van, 2019: Predictability of the rainy season onset date in Central Highlands of Vietnam, International Journal of Climatology, doi: 10.1002/joc.6383.
  3. Thi Lan Anh, D. and F. Aires, 2019: River discharge estimation based on satellite water extent and topography – An application over the Amazon. J. Hydrometeor., 0, https://doi.org/10.1175/JHM-D-18-0206.1
  4. Trinh-Tuan, L., J. Matsumoto, T. Ngo-Duc, M.I. Nodzu, T. Inoue, 2019: Evaluation of Satellite Precipitation Products over Central Vietnam. Progress in Earth and Planetary Science, 6:54. https://doi.org/10.1186/s40645-019-0297-7.
  5. Nodzu, M.I., J. Matsumoto, L. Trinh-Tuan, T. Ngo-Duc, 2019: Performance of Global Satellite Mapping of Precipitation estimate and its dependence on wind over Northern Vietnam. Progress in Earth and Planetary Science, 6:58. https://doi.org/10.1186/s40645-019-0296-8.
  6. David A. Neufeld, Curtis DeWitt, Pierre Lesaffre, Sylvie Cabrit, Antoine Gusdorf, Le Ngoc Tram, and Matthew Richter, 2019: SOFIA/EXES observations of warm H2 at high spectral resolution: Witnessing para-to-ortho conversion behind a molecular shock wave in HH7. “The Astrophysical Journal Letters, 878:L18”, https://doi.org/10.3847/2041-8213/ab2249
  7. Thiem Hoang, Le Ngoc Tram, Hyeseung Lee, and Sang-Hyeon Ahn, 2019: Rotational disruption of dust grains by radiative torques in strong radiation fields. “Nature Astronomy”, https://doi.org/10.1038/s41550-019-0763-6
  8. Thiem Hoang, Le Ngoc Tram, 2019: Dust rotational dynamics in C-shocks: Rotational disruption of nanoparticles by stochastic mechanical torques and spining dust emission. “The Astrophysical Journal”, 877:36, https://doi.org/10.3847/1538-4357/ab1845
  9. Tangang, F., Je. Santisirisomboon, L. Juneng, E. Salimun, J. Chung, Supari, F. Cruz, T. Ngo-Duc, P. Singhruck, Ja. Santisirisomboon, W. Wongsaree, K. Promjirapawat, Y. Sukamongkol, R. Srisawadwong, D. Setsirichok, G. Narisma, S. T. Ngai, T. Phan-Van, E. Aldrian, D. Gunawan, G. Nikulin, H. Yang, 2019: Projected future changes in mean precipitation over Thailand based on multi-model regional climate simulations of CORDEX Southeast Asia. International Journal of Climatology, 1-24. https://doi.org/10.1002/joc.6163
  10. De Laubier-Longuet Marx, N., E. Espagne and T. Ngo-Duc, 2019: Non-linear Impacts of Climate Change on Income and Inequality in Vietnam, AFD Research Paper Series, 101, 35 pp.. ISSN: 2492 – 2846. https://www.afd.fr/en/non-linear-impacts-climate-change-income-and-inequality-vietnam
  11. Trinh-Tuan, L., R.T. Konduru, T. Inoue, T. Ngo-Duc, J. Matsumoto, 2019: Autumn rainfall increasing trend in South Central Vietnam and its association with changes in Vietnam’s East Sea surface temperature. Geographical reports of Tokyo Metropolitan University, 54, 11-22. ISSN: 0386-8710.
  12. Pham-Duc, B. ; Papa, F.; Prigent, C.; Aires, F.; Biancamaria, S.; Frappart, F., 2019: Variations of Surface and Subsurface Water Storage in the Lower Mekong Basin (Vietnam and Cambodia) from Multisatellite Observations. Water 2019, 11(1), 75, https://doi.org/10.3390/w11010075
  13. Trinh-Tuan, L., T. Ngo-Duc*, J. Matsumoto, F.T. Tangang, L. Juneng, F. Cruz, G. Narisma, J. Santisirisomboon, T. Phan-Van, D. Gunawan, E. Aldrian, 2018: Application of Quantile Mapping Bias Correction for Mid-future Precipitation Projections over Vietnam, SOLA, 2019, Vol. 15, 1-4(TBA), doi:10.2151/sola.2019-001
  14. Nguyen-Thi, T., T. Ngo-Duc, T. Phan-Van, 2019: Performance of SEACLID/CORDEX-SEA multi-model experiments in simulating temperature and rainfall in Vietnam. Vietnam Journal of Earth Sciences, 41(4), 374-387, doi: 10.15625/0866-7187/41/4/14259.
  15. [in Vietnamese] Nguyễn Thị Tuyết, Ngô Đức Thành, Phan Văn Tân, 2019: Biến đổi nhiệt độ và lượng mưa trong thế kỷ 21 trên khu vực Đông Nam Á theo dự tính đa mô hình SEACLID/CORDEX-SEA (Projected Temperature and Rainfall Changes in Southeast-Asia and Vietnam based on the SEACLID/CORDEX-SEA Multi-model Experiments). Tạp chí Khoa học Biến đổi Khí hậu (Journal of Climate Change Science, ISSN 2525-2496), 11, 49-59.
  16. [in Vietnamese] Đinh Bá Duy, Ngô Đức Thành, Trần Quang Đức, Phan Văn Tân, 2019: Dự báo hạn mùa số lượng xoáy thuận nhiệt đới trên Biển Đông bằng các mô hình thống kê. Tạp chí Khoa học ĐHQG HN, Chuyên san Các khoa khọc Trái đất và Môi trường. (Seasonal predictions ofthe number of tropical cyclones in the Vietnam East Sea using statistical models, VNU Journal of Science: Earth and Environmental Sciences), 35(2), 45-57.

2018

  1. Ndikumana, E., Ho Tong Minh, D., Dang Nguyen, H.T., Baghdadi, N., Courault, D., Hossard, L., El Moussawi, I., 2018: Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sens, 10, 1394. https://doi.org/10.3390/rs10091394
  2. Tangang, F., S. Supari, J.X. Chung, F. Cruz, E. Salimun, S.T. Ngai, L. Juneng, Je. Santisirisomboon, Ja. Santisirisomboon, T. Ngo-Duc , T. Phan-Van, G. Narisma, P. Singhruck, D. Gunawan, E. Aldrian, A. Sopaheluwakan, G. Nikulin, H. Yang, A.R.C.Remedio, D. Sein, and D. Hein-Griggs, 2018: Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C. APN Science Bulletin, 8(1). https://doi.org/10.30852/sb.2018.436
  3. Luo, P.P., D. Mu, H. Xue, T. Ngo-Duc, K. Dang-Dinh, K. Takara, D. Nover, S.G. Schladow, 2018:An Assessment of flood inundation in Hanoi Central Area, Vietnam under historical and future extreme rainfall, Scientific Reports, 8: 12623. https://doi.org/10.1038/s41598-018-30024-5
  4. Bablet, A., P.V.H. Vu, S. Jacquemoud, F. Viallefont-Robinet, S. Fabre, X. Briottet, M. Sadeghi, M.L. Whiting, F. Baret, J. Tian, 2018: MARMIT: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm), Remote Sensing of Environment, 217, 1-17, https://doi.org/10.1016/j.rse.2018.07.031.
  5. Phan-Van, T., T. Nguyen-Xuan, H.Van Nguyen, P. Laux, H. Pham-Thanh, and T. Ngo-Duc, 2018: Evaluation of the NCEP Climate Forecast System and Its Downscaling for Seasonal Rainfall Prediction over Vietnam, Weather and Forecasting, 33, 615–640, https://doi.org/10.1175/WAF-D-17-0098.1
  6. Nguyen, TH., SK. Min, S. Paik, and D. Lee, 2018: Time of emergence in regional precipitation changes: an updated assessment using the CMIP5 multi-model ensemble, Clim. Dyn.https://doi.org/10.1007/s00382-018-4073-y
  7. H. Phan, H. Halloin, P. Laurent, 2018: IGOSat – A 3U Cubesat for measuring the radiative/electrons content in low Earth orbit and ionosphere, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2018.03.065
  8. P. Natoli, M. Ashdown, …, D.T. Hoang, …, 2018: Exploring cosmic origins with CORE: mitigation of systematic effects, Journal of Cosmology and Astroparticle Physics, http://iopscience.iop.org/article/10.1088/1475-7516/2018/04/022/meta
  9. J. Delabrouille, …, D.T. Hoang, …, 2018: Exploring Cosmic Origins with CORE: Survey requirements and mission design, Journal of Cosmology and Astroparticle Physics, http://iopscience.iop.org/article/10.1088/1475-7516/2018/04/014/meta
  10. LiteBIRD collaboration, Y. Sekimoto, …,D.T. Hoang, …, Concept design of the LiteBIRD satellite for CMB B-mode polarization, SPIE Astronomical Telescopes + Instrumentation, 2018, Texas-USA, DOI: https://doi.org/10.1117/12.2313432
  11. QUBIC collaboration, M. Salatino, Benoit Bélier , Claude Chapron , Duc Thuong Hoang, …, Performance of NbSi Transition-Edge Sensors read out with a 128 MUX factor for the QUBIC experiment , SPIE Astronomical Telescopes + Instrumentation, 2018, Texas-USA, DOI: https://doi.org/10.1117/12.2312080
  12. QUBIC collaboration, A. J. May, …, D.T. Hoang, …, Thermal architecture for the QUBIC cryogenic receiver, SPIE Astronomical Telescopes + Instrumentation, 2018, Texas-USA, DOI: https://doi.org/10.1117/12.2312085
  13. Nguyen-Thi, T., T. Ngo-Duc, T. Phan-Van, 2019: Climate analog locations of cities and disappearing climate in Vietnam, VNU Journal of Science: Earth and Environmental Sciences, (ISSN 2588-1094), 35(4), 12-21, doi: https://doi.org/10.25073/2588-1094/vnuees.4409. (in English) 

2017

  1. Duc Thuong Hoang, Guillaume Patanchon, Martin Bucher, Tomotake Matsumura, Ranajoy Banerji, Hirokazu Ishino, Masashi Hazumi, Jacques Delabrouille, 2017: Bandpass mismatch error for satellite CMB experiments I: Estimating the spurious signal, Journal of Cosmology and Astroparticle Physics. http://iopscience.iop.org/article/10.1088/1475-7516/2017/12/015/meta
  2. Pham-Duc, B., C. Prigent, and F. Aires, 2017: Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water, https://doi.org/10.3390/w9060366
  3. Pham-Duc, B., C. Prigent, F. Aires, and F. Papa, 2017: Comparisons of Global Terrestrial Surface Water Datasets over 15 Years. J. Hydrometeor., 18, 993–1007, https://doi.org/10.1175/JHM-D-16-0206.1
  4. F. Aires, L. Miolane, C. Prigent, Pham-Duc, B., E. Fluet-Chouinard, B. Lehner, and F. Papa: A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations, https://doi.org/10.1175/JHM-D-16-0155.1
  5. L. N. Tram, P. Lesaffre, S. Cabrit, A. Gusdorf, P. T. Nhung, 2017: H2 emission from non-stationary magnetized bow shocks, Monthly Notices of the Royal Astronomical Society, 473 (2), 1472–1488, https://doi.org/10.1093/mnras/stx2334
  6. Ngo-Thanh, H., T. Ngo-Duc*, H. Nguyen-Hong, P. Baker, T. Phan-Van, 2017: A distinction between rainy season and summer season over the Central Highlands of Vietnam, Theoretical and Applied Climatologyhttps://doi.org/10.1007/s00704-017-2178-6
  7. Du-Duc, T., C. Kieu, T. Ngo-Duc, 2017: Initializing the WRF Model with Tropical Cyclone Vital Records based on the Ensemble Kalman Filter Algorithm for Real-Time Forecasts, , Pure and Applied Geophysicshttps://doi.org/10.1007/s00024-017-1568-0
  8. Cruz, F. T., G. T. Narisma, J. B. Dado, P. Singhruck, U. A. Linarka, T. Wati, F. Tangang, L. Juneng, T. Phan-Van, T. Ngo-Duc, J. Santisirisomboon, D. Gunawan, E. Aldrian, 2017: Sensitivity of Temperature to Physical Parameterization Schemes of RegCM4 over the CORDEX-Southeast Asia Region, International Journal of Climatology, 37: 5139-5153, https://doi.org/10.1002/joc.5151
  9. Ngo-Duc, T., F.T. Tangang, J. Santisirisomboon, F. Cruz, L. Trinh-Tuan, T. Nguyen-Xuan, T. Phan-Van, L. Juneng, G. Narisma, P. Singhruck, D. Gunawan, E. Aldrian, 2017: Performance evaluation of RegCM4 in simulating Extreme Rainfall and Temperature Indices over the CORDEX-Southeast Asia Region, International Journal of Climatology, 37, 1634-1647, https://doi.org/10.1002/joc.4803

2016

  1. Nguyen-Xuan, T., T. Ngo-Duc*, H. Kamimera, L. Trinh-Tuan, T. Phan-Van, 2016: The Vietnam Gridded Precipitation (VnGP) Dataset: construction and validation, SOLA, 12, 291-296, https://doi.org/10.2151/sola.2016-057
  2. Katzfey, J, K. Nguyen, J. McGregor, P. Hoffmann, S. Ramasamy, H.V. Nguyen, V.K. Mai, V.T. Nguyen, B.K. Truong, V.T. Vu, H.T. Nguyen, V.T. Phan, Q.T. Nguyen, T. Ngo-Duc, T.L. Trinh, 2016: High-resolution projections for Vietnam – Methodology and evaluation of current climate simulations, APJAS, 52(2), 91-106. https://doi.org/10.1007/s13143-016-0011-2
  3. Juneng, L., F. Tangang, J. X. Chung, S. T. Ngai, T. W. The, G. Narisma, F. Cruz, T. Phan-Van, T. Ngo-Duc, J. Santisirisomboon, P. Singhruck, D. Gunawan, E. Aldrian, 2016: Sensitivity of the Southeast Asia Rainfall Simulations to Cumulus and Ocean Flux Parameterization in RegCM4. Climate Research, 69, 59-77. https://doi.org/10.3354/cr01386
  4. [in Vietnamese] Dư Đức Tiến, Ngô Đức Thành, Kiều Quốc Chánh, 2016: Sử dụng đồng thời quan trắc quy mô lớn và quy mô bão trong việc tăng cường thông tin ban đầu cho bài toán dự báo xoáy thuận nhiệt đới bằng mô hình số trị. Tạp chí Khoa học ĐHQGHN: Các Khoa học Trái đất và Môi trường, 32(3S), 224-235.
  5. [in Vietnamese] Phan Văn Tân, Phạm Thanh Hà, Nguyễn Đăng Quang, Nguyễn Văn Hiệp, Ngô Đức Thành, 2016: Sự biến đổi của ngày bắt đầu mùa mưa ở Tây nguyên và khả năng dự báo. Tạp chí Khoa học ĐHQGHN: Các Khoa học Trái đất và Môi trường, 32(3S), 190-200.
  6. [in Vietnamese] Dư Đức Tiến, Ngô Đức Thành, Kiều Quốc Chánh, Nguyễn Thu Hằng, 2016: Khảo sát sai số dự báo và kĩ năng dự báo quỹ đạo và cường độ bão của các trung tâm dự báo và các mô hình động lực trên khu vực biển Đông. Tạp chí Khí tượng thủy văn, tháng 1/2016, tr. 17-23.

The post Publications appeared first on University of Science and Technology of Hanoi.

]]>
https://usth.edu.vn/en/publications-sa-4661/feed/ 0